
Functional Programming
In TypeScript

Writing type-safe(r) code

Bertrand Caron
BFPG MeetUp - October the 8th, 2024

About me

● Principal engineer @ cascade.app (strategy software for planning and execution)
● PhD. in Computational Biochemistry
● 10+ years of experience as a software engineer
● Have worked in:

○ GIS (Geographical Information System)
○ FinTech (founder)
○ SaaS

● 6+ year of experience in TypeScript
● FP enthusiast

○ Going to BFPG for ~8 years

Context: Increasing popularity of JS and TS

● 62.3% of developers have used JavaScript in the past year
● 38.5% of developers have used TypeScript in the past year

○ 5th most popular after JS (1), HTML/CSS (2), PY (3) and SQL (4)

[Source: StackOverflow 2024 Developer Survey, 65k respondents)

A crash course in TS for FP enthusiasts

A primer on TypeScript: Primitive types
● Primitive values

const A: string = “Hello, BFPG”
const B: number = 42
const C: boolean = true

● Special types + values

const a: null = null
const b: undefined = undefined
const c: any = 42
const d: unknown = 42
const e: never = true // ← Compiler error, never does not have any members

const fail = (): never => {
throw new Error(‘ERROR!’)

}

const exhaustiveUnion = (x: ‘a’) => {
if (x === ‘a’) { return ‘HELLO’}
else { console.log(`${x satisfies never}`)} // ← Compiler will throw an error x: ‘a’ |

‘b’
}

A primer on TypeScript: Composite types

● Objects

type animal = {
name: string
age: number
vaccinated: boolean

}

● Arrays / Tuples

type X = string[]
type Y = [string, boolean]

● Functions

type F = (a: number, b: boolean) => [string, string]

FP concepts in TS: Algebraic data types

● Sum types

const maybeA: null | string = “hello”

● Discriminated type unions

type Animal = {type: ‘dog’, name: ‘rex’ | ‘red’} | {type: ‘cat’,
age: number}

● Product types

type A = { a: string}
type B = { b: boolean}
const d: A & B = {a: ‘Hello”, b: 42}

● Generics

type Maybe<T> = T | undefined

FP concepts in TS: Generics, type mappers, ternaries

● Generics
type Maybe<T> = T | undefined

● Type mappers (“type functions”)
type MaybeObject<T extends object> = {

[key in keyof T]: T[key] | undefined
}

● Ternary expressions
type MaybeBooleanObject<T extends objects> = {

[key in keyof T]: T[key] extends boolean ? boolean | undefined : T[key]
}

FP concepts in TS: Recursive types
● Recursive types* (* with some caveats, limited recursion depth)

type Node = {
value: number;
children: Node[];

};

https://www.richard-towers.com/2023/03/11/typescripting-the-technical-interview.html

https://www.richard-towers.com/2023/03/11/typescripting-the-technical-interview.html

Some extra oddities: Template literals, enums
● Template literals

type EmailType = ‘welcome’ | ‘unsubscribe’
type EmailRegion = ‘AU’ | ‘US’
type EmailId = `${EmailType}:${EmailRegion}`
// ‘welcome:AU’ | ‘unsubscribe:AU’ | ‘welcome:US’ | ‘unsubscribe:US’

● Enums

enum UserType {
Admin = ‘Admin’,
Viewer = ‘Viewer’,

}

// Both a const, and a type!
const mapping: Record<UserType, number> = {

[UserType.Admin]: 1,
[UserType.Viewer]: 2,

}

Example of cool TS type tricks

● Type function that reverse an arbitrary tuple

type Reverse<T extends unknown[]> = T extends [...infer U, infer P]
 ? [P, ...Reverse<U>]
 : []

type MyTuple = [string, boolean, number]
type ReversedTuple = Reverse<MyTuple> // ← [number, boolean, string]

https://github.com/bertrand-caron/ts-challenges
https://github.com/type-challenges/type-challenges

https://github.com/bertrand-caron/ts-challenges
https://github.com/type-challenges/type-challenges

TypeScript: The not so good
● All TS code is valid JS code (i.e. all the “bad” JS ideas leak into TS)

typeof null === ‘object’
typeof [] === ‘object’

● Everything is mutable by default

const constArray: [] = []
constArray.push(1) // ← Not a compiler error!

● No type level concept of runtime exception

const throwingFunction = (): boolean => {
if (Math.random() > 0.5) { return true}
else {throw new Error(‘ERROR’)}

}

● No first-class level concept of IO, pure functions, side effects, etc.
● No pattern matching
● Type system can be very lenient, or bent

○ Type casting: [] as unknown as number (can be mitigated with linting)
○ Type guards: deferring type casting logic to developers

const isBoolean = (value: unknown): value is boolean => {return true}

Some cool FP libraries in TS

fp-ts: Typed functional programming in TypeScript

Example: Option monad in fp-ts

import * as O from 'fp-ts/Option'
import { pipe } from 'fp-ts/function'

const double = (n: number): number => n * 2

export const imperative = (as: ReadonlyArray<number>):
string => {
 const head = (as: ReadonlyArray<number>): number => {
 if (as.length === 0) {
 throw new Error()
 }
 return as[0]
 }
 const inverse = (n: number): number => {
 if (n === 0) {
 throw new Error()
 }
 return 1 / n
 }
 try {
 return `Result is ${inverse(double(head(as)))}`
 } catch (e) {
 return 'no result'
 }
}

import * as O from 'fp-ts/Option'
import { pipe } from 'fp-ts/function'

const double = (n: number): number => n * 2

export const functional = (as: ReadonlyArray<number>):
string => {
 const head = <A>(as: ReadonlyArray<A>): O.Option<A> =>
(as.length === 0 ? O.none : O.some(as[0]))
 const inverse = (n: number): O.Option<number> => (n ===
0 ? O.none : O.some(1 / n))
 return pipe(
 as,
 head,
 O.map(double),
 O.flatMap(inverse),
 O.match(
 () => 'no result', // onNone handler
 (head) => `Result is ${head}` // onSome handler
)
)
}

@coderspirit/nominal: Nominal typing

import { WithBrand } from '@coderspirit/nominal'

type Email = WithBrand<string, 'Email'>
type Username = WithBrand<string, 'Username'>

const email: Email = 'admin@acme.com' as Email // Ok
const user: Username = 'admin' as Username // Ok
const text: string = email // OK
const anotherText: string = user // Ok

const eMail: Email = 'admin@acme.com' // Error, as we don't have a cast here
const mail: Email = user // Error, as the brands don't match

gvergnaud/ts-pattern: Pattern matching for TypeScript

FP in TS: My personal take

Aspect 1: Tooling
1. Rely on existing tools to improve code quality and compiler strictness

○ tsconfig.json: {strict: “true, noUncheckedIndexedAccess: true}
○ eslint + typescript-eslint (with “strict” ruleset)

■ Disallow type casting, etc.
■ Avoid “JSisms”: Boolean casting, ==, etc.

2. Use external libraries that augment the capabilities of the language
○ gvergnaud/ts-pattern (pattern matching)
○ @coderspirit/nominal (nominal typing)
○ fp-ts (everything else)
○ [Insert your favourite validation library here]

Aspect 2: Code styling
1. Prefer immutable data structures over mutable ones

○ Readonly<> (types), Object.freeze() (values)
2. Use discriminated unions to exclude impossible types
3. Limit use of OOP constructs and patterns

○ Use immutable class instances (i.e. all properties are `readonly` and set once by the constructors)
4. Prefer expressions over statements

○ reduce() or map() instead of for/while loops
○ ternaries instead of if/else
○ Always have matching else clause for any if statement

5. Prefer “FP-style” functions
○ Write pure functions (when possible)
○ Segregate impure function, and try typing them (e.g. errors as values rather than exceptions)
○ Push side-effect to the boundary of the application

6. Validate your inputs and outputs!
○ The type system is only as good as its weakest link!

7. Use FP architectural patterns (e.g. event sourcing) to complement your FP code

TS === great FP language?!

● Huge community === huge impact!
● Powerful and flexible type system

○ Type system is turing-complete!
○ Getting better everyday (very tight

release schedule!)
● Commercial language

○ Good “get s**t done” to
correctness ratio (if done correctly)

● Based on a weird language
○ Inherits all of its idiosyncracies

● Non-trivial type model (set theory)
○ Weird edge cases

● TS codebase is only as good as its
developers

○ Language allows some very good,
but also very poor practices

○ Type guards and type casting can
hide huge gaps in type safety

PROS CONS

Thank you for your attention

Questions?

Functional paradigms > functional code?

● Correct code does not mean bug-free
● Functional paradigms help compensate for the limitation of the language

○ Event sourcing: Append-only ledger of events (instead of mutable databases)

